Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 152: 44-58, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31857115

RESUMO

Understanding how cognitive functions arise from computations occurring in the brain requires the ability to measure and perturb neural activity while the relevant circuits are engaged for specific cognitive processes. Rapid technical advances have led to the development of new approaches to transiently activate and suppress neuronal activity as well as to record simultaneously from hundreds to thousands of neurons across multiple brain regions during behavior. To realize the full potential of these approaches for understanding cognition, however, it is critical that behavioral conditions and stimuli are effectively designed to engage the relevant brain networks. Here, we highlight recent innovations that enable this combined approach. In particular, we focus on how to design behavioral experiments that leverage the ever-growing arsenal of technologies for controlling and measuring neural activity in order to understand cognitive functions.


Assuntos
Cognição/fisiologia , Animais , Escala de Avaliação Comportamental , Encéfalo/fisiologia , Humanos , Camundongos , Condução Nervosa , Neurônios/fisiologia , Imagem Óptica/métodos , Optogenética/métodos
2.
Neuron ; 104(3): 488-500.e11, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31648899

RESUMO

Autism spectrum disorder (ASD) is associated with noise hypersensitivity, the suboptimal extraction of meaningful signals in noisy environments. Because sensory filtering can involve distinct automatic and executive circuit mechanisms, however, developing circuit-specific therapeutic strategies for ASD noise hypersensitivity can be challenging. Here, we find that both of these processes are individually perturbed in one monogenic form of ASD, Ptchd1 deletion. Although Ptchd1 is preferentially expressed in the thalamic reticular nucleus during development, pharmacological rescue of thalamic perturbations in knockout (KO) mice only normalized automatic sensory filtering. By discovering a separate prefrontal perturbation in these animals and adopting a combinatorial pharmacological approach that also rescued its associated goal-directed noise filtering deficit, we achieved full normalization of noise hypersensitivity in this model. Overall, our work highlights the importance of identifying large-scale functional circuit architectures and utilizing them as access points for behavioral disease correction.


Assuntos
Transtornos da Percepção Auditiva/fisiopatologia , Transtorno do Espectro Autista/fisiopatologia , Ruído , Córtex Pré-Frontal/fisiopatologia , Filtro Sensorial/fisiologia , Núcleos Talâmicos/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Função Executiva/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Vias Neurais , Neurônios/fisiologia , Prosencéfalo , Razão Sinal-Ruído , Núcleos Talâmicos/citologia
3.
Neuron ; 103(3): 445-458.e10, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31202541

RESUMO

To make adaptive decisions, organisms must appropriately filter sensory inputs, augmenting relevant signals and suppressing noise. The prefrontal cortex (PFC) partly implements this process by regulating thalamic activity through modality-specific thalamic reticular nucleus (TRN) subnetworks. However, because the PFC does not directly project to sensory TRN subnetworks, the circuitry underlying this process had been unknown. Here, using anatomical tracing, functional manipulations, and optical identification of PFC projection neurons, we find that the PFC regulates sensory thalamic activity through a basal ganglia (BG) pathway. Engagement of this PFC-BG-thalamus pathway enables selection between vision and audition by primarily suppressing the distracting modality. This pathway also enhances sensory discrimination and is used for goal-directed background noise suppression. Overall, our results identify a new pathway for attentional filtering and reveal its multiple roles in sensory processing on the basis of internal goals.


Assuntos
Gânglios da Base/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Filtro Sensorial/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Animais , Condicionamento Operante , Sinais (Psicologia) , Dependovirus/genética , Aprendizagem por Discriminação/fisiologia , Eletrodos Implantados , Vetores Genéticos , Camundongos , Ruído , Optogenética , Estimulação Luminosa , Recompensa , Detecção de Sinal Psicológico/fisiologia
4.
Nature ; 545(7653): 219-223, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467827

RESUMO

Although interactions between the thalamus and cortex are critical for cognitive function, the exact contribution of the thalamus to these interactions remains unclear. Recent studies have shown diverse connectivity patterns across the thalamus, but whether this diversity translates to thalamic functions beyond relaying information to or between cortical regions is unknown. Here we show, by investigating the representation of two rules used to guide attention in the mouse prefrontal cortex (PFC), that the mediodorsal thalamus sustains these representations without relaying categorical information. Specifically, mediodorsal input amplifies local PFC connectivity, enabling rule-specific neural sequences to emerge and thereby maintain rule representations. Consistent with this notion, broadly enhancing PFC excitability diminishes rule specificity and behavioural performance, whereas enhancing mediodorsal excitability improves both. Overall, our results define a previously unknown principle in neuroscience; thalamic control of functional cortical connectivity. This function, which is dissociable from categorical information relay, indicates that the thalamus has a much broader role in cognition than previously thought.


Assuntos
Atenção/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Cognição/fisiologia , Masculino , Camundongos , Vias Neurais , Optogenética , Córtex Pré-Frontal/citologia , Tálamo/citologia
5.
Nature ; 532(7597): 58-63, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27007844

RESUMO

Developmental disabilities, including attention-deficit hyperactivity disorder (ADHD), intellectual disability (ID), and autism spectrum disorders (ASD), affect one in six children in the USA. Recently, gene mutations in patched domain containing 1 (PTCHD1) have been found in ~1% of patients with ID and ASD. Individuals with PTCHD1 deletion show symptoms of ADHD, sleep disruption, hypotonia, aggression, ASD, and ID. Although PTCHD1 is probably critical for normal development, the connection between its deletion and the ensuing behavioural defects is poorly understood. Here we report that during early post-natal development, mouse Ptchd1 is selectively expressed in the thalamic reticular nucleus (TRN), a group of GABAergic neurons that regulate thalamocortical transmission, sleep rhythms, and attention. Ptchd1 deletion attenuates TRN activity through mechanisms involving small conductance calcium-dependent potassium currents (SK). TRN-restricted deletion of Ptchd1 leads to attention deficits and hyperactivity, both of which are rescued by pharmacological augmentation of SK channel activity. Global Ptchd1 deletion recapitulates learning impairment, hyper-aggression, and motor defects, all of which are insensitive to SK pharmacological targeting and not found in the TRN-restricted deletion mouse. This study maps clinically relevant behavioural phenotypes onto TRN dysfunction in a human disease model, while also identifying molecular and circuit targets for intervention.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Deleção de Genes , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Núcleos Talâmicos/fisiopatologia , Agressão , Animais , Animais Recém-Nascidos , Atenção , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento Animal , Modelos Animais de Doenças , Condutividade Elétrica , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Humanos , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Transtornos Motores/genética , Transtornos Motores/fisiopatologia , Inibição Neural , Canais de Potássio Cálcio-Ativados/metabolismo , Sono , Privação do Sono/genética , Privação do Sono/fisiopatologia , Núcleos Talâmicos/patologia
6.
Nature ; 526(7575): 705-9, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26503050

RESUMO

How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.


Assuntos
Atenção/fisiologia , Células Receptoras Sensoriais/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Animais , Giro do Cíngulo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Optogenética , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Tálamo/citologia
7.
Elife ; 4: e08760, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26460547

RESUMO

During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state.


Assuntos
Nível de Alerta , Córtex Cerebral/fisiologia , Sono , Núcleos Talâmicos/fisiologia , Animais , Eletrofisiologia/métodos , Camundongos , Optogenética/métodos
8.
Proc Natl Acad Sci U S A ; 111(38): 13811-6, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25114234

RESUMO

The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury.


Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Engenharia Tecidual/métodos , Animais , Lesões Encefálicas/terapia , Córtex Cerebral/citologia , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
9.
J Neurosci ; 32(13): 4417-25, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22457491

RESUMO

Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes.


Assuntos
Adenosina/metabolismo , Astrócitos/metabolismo , Líquido Extracelular/metabolismo , Transmissão Sináptica/fisiologia , Vigília/fisiologia , Adenosina/fisiologia , Animais , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/fisiologia , Privação do Sono/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Teofilina/análogos & derivados , Teofilina/farmacologia , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...